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First we show, from the BBGKY hierarchy and under exponential clustering 
assumption, that the three-dimensional one-component plasma obeys the com- 
pressibility sum rule which links the compressibility to the fourth moment of the 
two-point correlation function. Then it is proved that the first equation of the 
hierarchy is equivalent to the known value of the correlation function of 
momentum current and density. Finally we are concerned with the energy den- 
sity, its definition, and its correlation with the numerical density and with itself. 
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1. I N T R O D U C T I O N  

Over the last few years, the study of the one-componen t  plasma has attrac- 
ted renewed interest because of  r igorous results which have been obtained. 
Let us recall that  the model  is a fluid of classical ions which interact via a 
purely Coulombic  potential  and which are immersed in a uniform and rigid 
background  of  opposite charge in order  to ensure charge neutrality. 

Some properties, like the perfect screening condit ion of  the two-point  
correlat ion function (Sti l l inger-Lovett  condition),  were tradit ionally accep- 
ted on the basis of arguments  which are intuitively appealing but  not  
rigorous. 

Recent works (15) have been devoted to r igorous proofs of these.per- 
fect-screening condit ions for the density correlat ion functions, using the 
B B G K Y  hierarchy of equations. The p roof  is based on the only assumpt ion 
that the Ursell correlat ion functions have a spatial decay faster than some 
power of the distance (clustering hypothesis).  
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In this work, we present a systematic (but not exhaustive) study of the 
properties, of the two-, three-, and four-point correlation functions, which 
can be deduced from the hierarchy and the clustering hypothesis (we make 
the assumption of a decay faster than any power of the distance). 

After having described, in Section 2, the general framework of this 
study, we show in Section 3 the perfect screening conditions (PSC) and the 
sum rules satisfied by the Ursell functions u2, u3, and u4. This section does 
not contain any new results compared to Refs. 1-5 but is presented with a 
pedagogical aim. From the hierarchy equation for u, ,  which gives the 
gradient of un in terms of the functions u2, u3,..., un+ 1, we deduce the PSC 
for u, and the sum rules for u ,+ l .  The compatibility of the PSC and the 
sum rules for u3 defines the second moment of u2, giving thus the ratio of 
the structure factor S(q) over  q2 as the wave vector q tends to zero. 
Applying the same calculation for u4 does not lead to any new condition. 
By using the symmetries of u3 and u4, some other new relations between 
two-, three-, and four-point integrals are derived (Section 4). In Section 5 
we are concerned with the temperature derivative of the two-point integrals 
which are, a priori, four point integrals. These are generally expressed in 
terms of three-point integrals because of the sum rules for u4 and in a few 
cases these three-point integrals are reduced to two-point integrals. Thus 
the q4 term of S(q) at small q values, is linked to the compressibility. 

In Section 6 we show that the hierarchy for u2 is equivalent to the 
known value of the correlation function of momentum current and density. 
In Sections 7 and 8 we examine the problem concerning, the definition of 
the energy density, and its correlation with the density and with itself. In 
fact it is necessary to take some care with this definition in order to avoid 
long-range correlation (and unusual behavior at small wave vectors). 

Finally we present, in an appendix, a list of relations between the 
moments of Uz(r ) and those of the structure factor. 

2. G E N E R A L  F R A M E W O R K  

We consider a set of N-point ions of mass m, charge e in a volume V. 
The numerical density is p = N/V. These ions are classical and interact via 
purely Coulombic forces. A uniform and rigid background ensures the elec- 
trical neutrality as it is necessary for the thermodynamical limit. Periodic 
boundary conditions are taken. Then the Hamiltonian is 

p~ 1 1 _ 4rte 2 ik.r 
H=~Fm+ ~ y~ v(r,j), ~(r)= T L --p-e (I) 

�9 i ~ j  - - k • O  " "  
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where Pi is the momentum of particle i and r o = r j -  ri is the vector which 
defines the relative position of ions i andj .  The potential v(r) is equal to 
e2/r as long as r is small compared to L = V 1/3. 

The mean distance between ions, r0, and the coupling parameter, F, 
are defined, as usual, by 

4 ~ p r 3 = l ,  F = f l ~ ,  fl 1 ro = >  (2) 

T is the temperature measured in energy units. Frequently, dimensionless 
quantities will be used; the distances r, s, t will be denoted by x, y, z 
(x = r/r o, etc.) and the wave vectors k, by q = kr o. 

The n-point correlation functions are defined by 

pn(rl, r2,..., rn)=pngn(rl, r2,..., rn)= (Ep(rl) p(r2)"" P(r,)]sL) 

p ( r ) = ~ a ( r - - r i )  
i 

(3) 

p(r) is the one-point density, as a function of the ion positions; the symbol 
[ ]sL indicates that the self-terms are left out, that is, in the n sums only 
the terms where all the particles are different, are taken into account; and 
the symbol( ) stands for the canonical average. 

Finally, the Ursell functions (6~ are introduced: 

g2(rl, r2)= 

g3(r,,  r2, r3)= 

g4(rl, r2, r3, r4)= 

u2(r~, r2) 

U3(F1, r2, 

u4(rl, r2, 

+u3(rl ,  

+u2(rl ,  

+u2(r l ,  

-1- u2(rl, 

+u2(r2, 

+1 

r3)+u2(r l ,  r2)+u2(r l ,  r3)+u2(r2, r3)+ 1 

r3, r4) q- u3(rl, r2, r3) q- u3(rl, r2, r4) 

r3, r4) q- u3(r2, r3, r4) 

r2) u2(r3, r4)-k u2(rl, r3) u2(r2, r4) 

/"4) ~/2(r2' r3) 4- U2(FI, r2) 

r3) q- u2(rl, r4) 

r3) q- u2(r2, r4) -~ u2(r3, r4) -1- 1 (4) 

We assume that these functions (i) depend only on the shape of the figure 
formed by the various points (and not on its space orientation), (ii)are 
symmetrical in any permutation of the particles, and (iii) tend to zero faster 
than any power of the distance when a particle is removed to infinity 
(exponential clustering hypothesis). 
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The BBGKY hierarchy is then written 

p,(r, ,  r2,..., rn) 

0 
= -~pn(r , ,  r2,..., rn)j~=2-~r 1 v(rl - rj) 

- f l  f d3r,+lP~+l(r,,rz,.. . ,rn+l) O-~lv(rl-rn+,) 

Vieillefosse 

(n ~> 2) (5) 

3. PERFECT SCREENING C O N D I T I O N S  A N D  S U M  RULES 
FOR u2, us, A N D  u4 

3.1. Hierarchy for n = 2  

Expressing /92 and P3 as functions of u2 and u3 and taking their 
properties into account, we obtain from the hierarchy (n = 2) a PSC for u2 
and a sum rule for u3. The triangle, formed by the three points of u3, is 
defined by x = x 2 - x l  and y = x 3 - x l  in dimensionless units. It follows 
from (5) that 

d3y 2" f; u3(x ' y) 
3 f 4  ~ y2 

fo 
1 d 1 1 3 y2 

=~.-j-s x2 dyu2(y) (6) 

where the symbol ^ indicates unit vectors (2 = x/llx[b). 
If the left-hand side of (6) tends to zero faster than any power of x as 

x tends to infinity, the sum of the last two terms on the right-hand side 
must vanish in the same way in this limit. From this, the well-known PSC 
for u2 follows(I): 

12 = - 1/3 (7) 

with the following definition of the integrals I,: 

Io ~~ fo +~ 
In= dxxnu2(x) (n>~0), In= dxx=g2(x) (n~<-2)  

I 1= lira - - u 2 ( x ) - l o g ~  (8) 
e~O X 

fO ~~176 
IL= = dx x n log x u2(x) (n >~ 0) 
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By taking (7) into account,  the Eq. (6) is then writ ten 

~ ' ~  l d  1 + 3  oo 
3 1 d3y4~z ; ?u3(x' Y)=~'--~xU2(X)--~ u2(x) -~ff  y2 dyu2(y) (6')  

After mult iplying (6')  by a function w(x)= w(/lxl[), which is assumed 
to be integrable at the origin [S0 dy w(y) does exist]  and integrat ing over  
x, we obta in  the relation 

1 [-~d(x2w(x))l 1 I-W-~] = ---~I --51 

+ '[fo + w(y)] (9) 

where the two- and three-point  integrals I and L are defined by 

I[a(x)] = 3 f 4d-~x a(x) u2(x), IEx ~ ] = 3I~ +2 

d3x d3y 
LEb(x, y ) ]  = 3 j (4~z)2 b(x, y) u3(x, y) 

(lO) 

a(x) and b(x, y) are arb i t ra ry  functions subjected to the only condi t ion 
that  the integrals (10) exist. 

Fo r  w(x)= x n (n > 0), (9) leads to 

[x-~2 ] n+2I.+l-In 3 (n~>0)  (11)  L 2 ' ) )  = F + ~ - - ~  I .  + 3 

When  negative values of n are considered, it is bet ter  to start  f rom (6'): 

L [+2" 9]-  IOF I 1+3IL2 

L _ 1 

I+ r,2-3,  
(12) 

3.2. H i e r a r c h y  f o r n = 3  

In the same way, we will obta in  PSC for u 3 and sum rules for u4. The 
four points  of  u4 are located by taking one of them as the origin: x =  
x2 - x l ,  y = x3 - x l ,  and z = x4 - x~. r~ stands for an arb i t ra ry  unit  vector  in 
the plane of x and y. We get f rom the hierarchy 

822/41/5-6-19 
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r d3z ~" Fl 
3 J --~U4(X , y , z )  Z2 

=~'fi" -~x -@y u3(x' y ) -  -"~-+ u3(x' y) (A) 

-3u2(x) i d3z~ u2(z - y) -7~ ' ~ - u2 (x))~;~ (B) 

d3 z ~. fi 2. Ft 
-3u2(y) , / - ~  u2(z - x) - 7 -  u2(y) x2 (C) 

f d3Z u3(z-- x , Z-- y) 7 - -  bl2(x-- y ) -'-'~-]- (D) -3J 4rE 

(13) 

The terms (A), (B), and (C) tend to zero faster than any power of the dis- 
tances x or y; for example (B) is written in the following form by taking the 
PSC (7) into account: 

+o~ ~.~ 
3U2(X ) [ Z 2 dz u2(z ) 7 Jy 

After some transformation, we obtain for the last term (D): 

6 3 [ d3x4 1 
--/~ "~Xl t_3 f "-'~ U3(X2, X3, X4)]IX4--XlI] 

( ,  
+ u2(x=-x3) llxz-xxll 4 Ilx3 xlN 

(14) 

which has to tend to zero faster than any power of the distance lIxl-x2ll 
[as the left-hand side of (13)] when the latter tends to infinity. Expanding 
(14) in power of 1/llxl-Xzll in this limit, we deduce the PSC for u3 (3)" 

[ d3Y u3(x, y) = -2u2(x) 3 j T ~ -  ~ 

(15) 

3 f d3y u3(x, y)/Pt(.;c" 9) = --xZu2(x) (1 >1 1) 

The Pt are the Legendre polynomials. These conditions are not indepen- 
dent as will seen later. Integrating these equations with some function w of 
]lxll, we get 

L[w(x)] = -~I[w(x)] 
(16) 

L[w(x) /P,(~. ~)] = -}Z[x'w(x)] (l> 1) 
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Taking (15) into account, the term (D) in (13) is written in the form 

1 " 

- 3  j 4re 

As well as the PSC for u3, we can obtain from (13) sum rules for u4 by 
integrating (13) with some functions of x and y. These four-point integrals 
will be defined in the following way: 

d3x d3y d3z 
m[f (x ,  y, z)]  = 3 f (4n) 3 u4(x, y, z) f(x, y, z) (18) 

where x, y, and z are, respectively, the vectors x12, x13, and x14. Integrating 
(13) leads to 

M [ ~ - w ( x ) l = ~ l l x d w ( x ' ] + ~ I [ w ( x ) ] + l l I - ~ l  

_ l,[fo+,W,,, ? 

3.3 .  P S C  f o r  u 4 

We could deduce the PSC for /./4 and sum rules for u5 from the 
hierarchy (5) with n =4.  But the number of terms becomes considerable 
and the sum rules for u5 present less importance than those for u4. 
Another, probably equivalent, way to obtain the PSC for u4, is to write 
that the mean potential around three fixed ions decreases faster than any 
power of the distance far away from these ions. When applied to u2 and u3, 
that argument is right. The mean density at a point 4 around three charges 
fixed at 1, 2, and 3 is equal to pg4(1, 2, 3, 4)/g3(1, 2, 3). We conclude that 
the quantity 

, , )  f  zu4,x, ,z, 1 IIJC-xt-------/+ IIX-yl~ +3 4n I[X-z[------~ 

has to decrease faster than any power of 1/I[XII when IIx[I tends to infinity. 
The other terms of the mean potential behave well in this limit and thus are 
not written. That leads to the PSC for U4(3): 

33~ d3z4~ u4(x, y, z) = -3u3(x,  y) 

(21) 

3 j~ d3z4n u4(x' y' z) ztP,(~ �9 f() = -u3(x, y){x'P,(2" X) + ytP,( 9. f() } (l >1 1) 

where )( is an arbitrary unit vector. 
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3.4. Compatibil i ty of the Sum Rules with the PSC 

Sum rules for un and PSC follow, respectively, from the hierarchy (5) 
with n and n + 1. Therefore it is natural to see if these two kinds of integrals 
are compatible and this allows us to hope for new conditions on integrals 
with un_ 1 which occur in both cases. 

Let us first look at u3. We deduce from the sum rules (11), 

L 77x.33 = - ~ I 2 - 1 1  nL~I4 (22) 

and from the PSC (16), 

= -11 (23) 

That leads to the well-known condition of Stillinger and Lovett(7): 

2 2 
/4 = ~ I 2 -  3F 1 

(24) 

which gives the behavior of the structure factor S(q) at small wave vector 

S(q)=l+i[sinqx ] q2 q2 
k qx Aq2~ (25) 

The proof of the Stillinge~Lovett second-moment condition has been first 
given by Martin and Gruber. (4) 

Applying the same method for u4, we did not obtain any new con- 
dition. As a matter of fact, taking the symmetry of u4 into account, the 
integral (19) (sum rule) is equal to the integral 

M 1/4) I[w(x)] 1 

which follows from the PSC (21). This leads to an identity as soon as (24) 
is true. 

More complicated calculations with M[(y.z)(y.x)w(x)/z 3] arrive at 
the same result. 



Conditions for the One-Component Plasma 1023 

4. S O M E  P A R T I C U L A R  I N T E G R A L S  OF u3 A N D  u4 

The symmetry u3(x, y) = u3(y, x) has already been taken into account. 
There is another symmetry in the exchange of two particles of which one is 
at the origin: 

x -* - x ,  y -* y - x (26) 

The following laws of transformation are easily seen to hold: 

x 2 - -  2x" y -* - ( x  z - 2x" y) 
(27) 

y 2 - x .  y - *  y Z - x .  y 

This results in the identity 

L [ w ( x ) ( y  2 - x" y )P (x  2 - 2 x .  y)2q+ 1 ]  = 0 (28) 

with w(x)=  w(Uxll), p and q are integer (~>0). 
For  p = q = 0 we obtain 

L [ w ( x ) x l  = 2 L [ w ( x )  ys f~] (29) 

That  shows that the PSC (16) for / = 0  and l =  1 are not independent. 
Moreover, it is easily proved that these two conditions are equivalent (by 
Fourier transform). The case p = 1, q = 0 is more interesting. Taking the 
PSC (16) into account, we obtain 

5 L [ w ( x )  x2y  2 ] - 2 L [ w ( x )  xy3pl(s �9 9)]  = l I [ w ( x )  x 4 ] (30) 

which leads for w ( x ) =  1, 1 /x  2, and 1/x  3 to 

L[x~y ~] = -I6,  L P I ( ~  r = - T  h 

(31) 

= / ,  4 I3 + "i-'~ I6 

Other new relations concerning three-point integrals can be deduced 
from (28) with larger values of p and q. Calculations become rather heavy. 

The same kind of symmetry for u4 allows us to deduce from the 
hierarchy the integral M [ w ( x - y ) / z ] ,  which will be useful later. In the 
exchange of particles 1 and 4, the following quantities are transformed as 

z -* - z ,  y . z -* z2 - -  y . z 

x - , x - - z ,  x - - y - * x - - y  (32) 

y - * y - - z ,  
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In this way, we obtain the relation 

] 
It must be noticed that this equation (and what follows) is only true for the 
Coulombic potential 1/r because explicit use is made of 

r.~rV(r)= -v(r) 

Integrating (13) leads to 

M w ( x - y !  = - - ~ L [ w ( x ) ] - - ~ L  ( 2 x 2 - x ' y )  - -~L[w(x )x ' y ]  
[_ x 3 

- - I d3x d3y 
1L[w(x) x 2 ] + L [ w ( x ) y 2 ] - 6 J  (47z)2 u2(x) w(y--x)  
6 

f d3z + z)" (y + x) 1 
(34) x 

In this relation, some three-point integrals can be reduced to two-point 
integrals. When necessary, this will be done. 

5. T E M P E R A T U R E  D E R I V A T I V E S  OF THE T W O - P O I N T  
I NTEG RALS 

The temperature derivative of the average value of a quanti tyfis  given 
in the canonical ensemble by 

O 
c3---~ ( f  ) = - (  6H 6f ) (35) 

where fi is the inverse of the temperature, H is the Hamiltonian, and 6f is 
the fluctuation of the quantity f: 

af = f  - ( f )  (36) 

Let us consider the two-point integrals 

--~W(X) [Op(x I +X)6p(Xl)']SL 

d3x 
= 3 w(x) u2(x) (37) 3 
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Their derivative with respect to F are a priori functions of two-, three-, and 
four-point integrals. But the four-point integral, which occurs, can be 
expressed in terms of two- and three-point integrals. Therefore the 
derivative aI/OF is, in general, a function of two- and three-point integrals 
and in some cases a function of two-point integrals, when the three-point 
integrals are reduced to two-point integrals. 

It is easily seen that only the potential energy does occur in (35) for 
the quantities f considered here. Using the expression 

1 
p--3 ( [6p( r l )  6p(r2)]SL[bp(r3) bp(r4)]SL ) 

= g4(rl, r2, r3, r4) + 1  [6 ( r t - - r3 )+6( r2 - - r3 ) ]  g3(rl, r2, r4) 
P 

1 
+ -  [ 6(rl - r4) + 6(r2 - r4) ] g3(rl, r2, r3) 

P 

1 
+---5 [c~(rx - r3) b(r2-r4)+g)(r2-r3) 6(rl - r 4 ) ]  g2(rl, re) (38) p-  

We deduce the derivative of I 

~ I [ w ( x ) ] =  - } M [ W ( Y - x - - Z ) ] - - 6 L [ - ~ ]  

- 27 f dax d3y d3z w(y - z) u2(y) u2(x - z) 
(4g) 3 x 

d3x d3y w(y) f d3x w(x) 
- 1 8 f  -~n-~ x u2(x- y ) -  3 4re x gz(x) (39) 

and taking account of the expression (34) of the four-point integrals and of 
the integrals (9) and (15), we obtain 

1 ~ I[w(x)] = -3 I [w(x ) ]  +~  l [ x  dWd(~) ] 

3 i[ x2w( x ) ] 9 2 ---~ L[w(x) y23 (40) 

with the only condition on w(x) that the integrals do not diverge. 
In the particular cases w(x)= x" 2 (n >/0), it follows that 

0In 6 - ( n + l )  3 1 3 n 2 2 
O'-~ = r I . - ~  n + z - ~ L [ x  - y ] (n~>O) (41) 
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In this equation, the three-point integral is only known for n = 1, 2, and 4 
[Eqs. (16) and (31)]: 

dI1 4 11 9 I 27 
d F -  F + [" 4--2"0 I6 

dI 2 3 I2 3 I 
d F -  F +-~ 4 

dI4 I4 
dF F 

(42) 

As 12 = -1/3,  the last two equations show only that /4 = -2/3F.  More 
interesting is the first one because it allows to link I6 to the compressibility. 
In fact the internal energy per particle is given by 

v 3 fie . ( H)  fleK + fle ( I + F I ~ )  =0-~= =g (43) 

and the compressibility by 

/~0P r = 4 v 1F2 ~ f l ev_ l+~f leV  1 0 v 
-~p l +-~ fle +-~ OF F +-~ F-~ f l e  (44) 

We deduce from (42) 

4 0 f l O P  (45) 
[ 6  = - -  9F 2 0p r 

The integral 16 gives the coefficient of the q4 term of the structure factor at 
small q values. 

The expansion of S(q) is then 

q2 q 4 f l O p w  S(q) q~O3F 9F 2 Op +O(q 6) (46) 

This result had been established earlier from various arguments (8-1~ but 
not really proved. 

The equation (40) leads to other results; with w(x)= (sin qx)/qx, it 
follows that 

3 qO 
_~00F[S(q)_I ]=_  [ S ( q ) - l ] + p ~ q [ S ( q ) - l ]  

9[ sinqxq 
+ ---~qq q ~qq I S ( q ) -  1] L - -  (47) 2 q2 _ 2 y2 qx A 
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and by Fourier transform the temperature derivative of u2 is then 

0 6 x 0  3 2 3 
a---? ~ ( x )  = - ~ ~ ( x )  - y ~  u~(x) - ~ x .~(x)  + ~ v2(x) 

(48) 

dy y2u3(x, y) f 
~ ( x )  = 3 j 

The ignorance of v2(x) does not allow to have a differential equation for u2. 
On the other hand, this equation can be useful to calculate three-point 
integrals, which are directly related to v2, or, which are connected to v2 by 
using symmetries of u3, as it has been considered in Section 4. 

6. M O M E N T U M  C U R R E N T - D E N S I T Y  C O R R E L A T I O N  

Another way to show the q2 behavior of S(q) and to check the sum 
rules for u3 (obtained from the hierarchy), consists in calculating the 
correlation function of the momentum current and the density. The 
momentum density g~(r) and the momentum-current satisfy the conser- 
vation equation 

~, g~(r) + c3~rc~(r) = 0 (49) 

and are defined by 

g~(r) = ~ Pi~ 6(r - ri), ~z~/~(r) + 
i 

rc~(r) = ~ mvi~ l)il~(r -- ri) (50) 
i 

i i ~ j  

Taking the Fourier transform, we obtain 

= pTS(k) + k2 j dR e - i k R ( f ~ ( R  + r) 6p(r)) (51) 

Expressing the correlation function (f~ 6p)  in terms of integrals with u 2 
and u3, 

( f~(R + r) ~p(r) ) = p2e2 ~ (R - r l) ~ [u2(R ) + 1] + p3e2 f d3rl u2(rl) - -  

+ p3e2 f d3rl rl~ r-~- u3(rl, R) 

IIR- r1113 

(52) 
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we deduce (in dimensionless units) 

p ~  - S(q) 1 + + 5~(q) (53) 

)~(q)=Fl[Jl(q')]+3FL~Jl(qx)x'Y]L qx- j L q-~ yS (54) 

where Jn indicates the spherical Bessel function of order n. Using the sum 
rules for u3 (9) leads to 

2(q)= - t~ -5~  x 

and taking the well-known properties of the Bessel functions into account 
(55) becomes 

2 ( q ) = l - S ( q ) ( l + - - ~  (56) 

It follows from (53) and (56) 

K~,o(k) = ;T (57) 

This relation is well known and can be directly derived (l~ from the 
conservation equations for momentum (49) and for density 
Otp + #~(gJm)=0. Therefore we have shown that (57) is true if the sum 
rules (9) [which follow from the hierarchy (6)] are true. 

Inversely, starting from the relation (57) and the expression (51) of 
K~p, we deduce with the help of the Bessel functions properties that 

2 T (f~(R + r) cSp(r) ) = p - ~  u2(R ) (58) 

and taking account of the expression (52) for that correlation function, it is 
easily seen that we obtain the hierarchy (6). 

That proves that the equation (57) is equivalent to the hierarchy (6) 
(in the clustering hypothesis) and it must be noticed that the proof fails if 
the velocities are correlated and not distributed according to the 
Maxwellian. 

7. E N E R G Y - D E N S I T Y  C O R R E L A T I O N  

Here we are dealing with the definition of the energy density and its 
correlation with the density. It is easily seen that a slow decrease at large 
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distance is to be expected when two potentials v(R) occur in a correlation 
function. A simple example is the potential-potential correlation which 
decreases as 1/R at infinity. (~2) The total Coulombic potential 

1 fdrl v(r_rl)p(rl) (b(r) e (59) 

has the following self-correlation function 

eZ(qk(R+r)r f dr l v(R-rl)[v(q +p f dr2u2(r2)v(rl +r2)] (60) 

which behaves at infinity as 

T (O(r + R) O(r)) R'~oo T ( - - 3 f / 4 ) = R  (6l) 

If we take the following potential energy density, 

[ E2(r)] (62) 
eV(r)=[ 87c JSL 

where E~(r) is the electric field, deriving from the potential ~b (59) 

E~(r) = -~?~b(r) (63) 

it is easily seen that the correlation function (&v 6p) decreases at large 
distance like R 6: 

(3)2  3 
(&V(r+R) 6p(r)) RToo -~ FL(x'Y)=8~2R6 (64) 

The Fourier transform of this function includes a term in k 3 a s  k tends to 
zero. That long-range correlation disappears if the self-term is kept in (62) 
(of course spatially extended charges are then needed in order to avoid 
divergences at small distances). Only the total field is screened and 
therefore the exclusion of some terms removes more or less the perfect 
screening. 

Keeping the self-term in e v makes the situation more complicated 
because of the change in the potential v(r) at small distances. It is more 
interesting to take into account that the energy density is multivalued and 
to modify the definition of e v (and of course the definition of th~associated 
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current). The difference with respect to (62) has to be the divergence of a 
vector. That is true for 

1 f dr I v ( r -  rl)[bp(r ) 6p(rl)]s L (65) e V(r) = ~ e[6p(r) ~b(r)]sL = 

because of the following relationship 2 

E 2 le6p(r) O(r)+div ( f b E )  
8---~ = 2 - ~ (66) 

The correlation of e v of (65) with the density is 

1 p3 1 p Z 6 ( R )  f dr 1 v(rl) u 2 ( r l )  (6eV(r + R) 6p(r)) =~ f dr1 v(rl) u3(r~, R)+-~ 

1 + ~ pZv(R) u2(R ) (67) 

That function decreases faster than any power of the distance as R tends to 
infinity. Taking the Fourier transform we obtain 

l (6sV(k)6p( -k ) )  =-~pTF3 {Lkx[lsinqv]+II+lI[sinqX]~qY _l -3 L q X2 J J  

3 
=- - pTS(q) 7(q) (q = kro) (68) 

2 

That last equation defines the function a(q). 
The kinetic energy is 

Pal 6 ( r -  ri) (69) 

2 This is only possible in the classical (nonrelativistic) limit, where curl E = 0. This e v has the 
meaning of potential energy density for the particles and not of field energy density. The 
radiative effects are excluded out of this framework. The associated current jv ,  defined apart 
from a curl of a vector, is [c(E x B/4~t) - ~?t((bE/8~)]sL, where B is the magnetic field which 
is obtained from the Maxwell equations 

div B = 0 ,  curlB=l-(~?tE+4rtej) 
r 

j is the particle current, j v  is not confined to the particles, like for the non-Coulombic fluids, 
because the forces acting on the particles change their energies. In the limit of small wave 
vector, the two quantities (62) and (65) become identical. 
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and thus the correlation of the total energy density e = ~K+ e v with the 
density is given by 

L (6e(k) ~Sp(-k) )=~ pTS(q)[1 + c~(q)] (70) 
V 

Taking account of (16), (31), and (45), it is easy to show that c~(q) tends to 
a finite limit as q tends to zero: 

3 [1+c~(0) ]=  3 I 9F2 ] ~?e T --5 l+-~- - I6  =f l~p  (~=pe) (71) 

and thus it follows that 

((3e(k)(}p(-k)) k=o~p r((~p(k)c~p(-k))+O(k4) (72) 

With the definition of the temperature fluctuation 

de r & p 6e(r) =~p 6p(r)+--~ 6T(r) (73) 

we deduce that the temperaturemlensity correlation tends to zero at least as 
fast as k 4 at small wave vectors: 

l (6T(k) 6p(-k))  1 <  ~ (74) lim 
k ~ O  V K 

8. ENERGY-ENERGY CORRELATION 

With the definition (65)ofsV(r), the function (6eV(r + R)6eV(r)) well 
exhibits a spatial decay faster than any power of the distance. A direct 
calculation (with no use of sum rules for the Ursell function) leads to 

1 iv <6E'C(k) 6~'~(-k)> = p r  2 ~ +~ S(q) 

1 <6~,~(k) 6eV(_k)> 3 1 =5 T -~ ( &V(k) c~p(-k) ) 

_i <~e~(k )6~(_k)> 1 V =- ~ <6e V(k = O) & V(k = O) ) + ~ pT2S(q) fl(q) 

V1 <6eV(k=O)6~V(k=O))=pT2 - M [{x-y[[ +6L 

+ ~ J o  -~'~ tq) 513+ 
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where K is the integral 

r d3x d3y , , 
K= ) ~ u2tx) u2(y) [Ix - yll, 3 f + ~176 d--~q S2(q) ~-~- - ~ - g - ~ I  3 

~zJ0 q 
(76) 

The four point integral in (75) can be expressed in term of three-point 
integrals (34) 

I ' ] 4 ['1+2 M ]lx--y]lz = F - ~ L  ~yy 5L  

1L[x]+L[X---~I+3K (77) 
6 

x ~ ] 3L[~'Y] 

Substituting this expression in (75), we notice that the unknown integral 
L[1/xy] disappears and, using the expressions (11) and (16) of the other 
three-point integrals, we obtain 

81 F21 ] l<6eV(k=O)6eV(k=O))=PT2[6s 6J (78) 

which is equal to pT2c~ (45), c~ being the potential part of the specific heat 
per particule at constant volume 

_ _  _ _  ~ _  3 (79)  cV= -F2 ~FO ~eV= ~eV_ ol  ~eV=cv-2 

The energy-~nergy correlation function follows: 

9 
]-v (as(k) & ( - k )  ) = pT2cv + ~ pr2S(q)[1 + 2c,(q) +/3(q)] (80) 

When q tends to zero, e(q) and/~(q) are finite and that function well tends 
to pT%v as it is expected for the energy fluctuation in the canonical ensem- 
ble. 

9. C O N C L U S I O N  

We have first deduced, from the hierarchy, perfect screening conditions 
and sum rules for the Ursell functions u2, u3, and u4 (under exponential 
clustering assumption). By using symmetries of the Ursell functions, some 
other new three- and four-point integrals have been calculated. In this 
manner, the temperature derivatives of the two-point integrals can be 
expressed in terms of three-point integrals (instead of four-point integrals) 
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which reduce to two-point integrals in a few cases. It follows the 
relationship between 16 and the compressibility. 

Secondly, we have been concerned with the energy density, we have 
shown that some care has to be taken with the definition of that quantity 
in order to avoid correlations decreasing as powers of the distance. 
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APPENDIX 

Until now we have considered the moments of u2. Sometimes it is 
more interesting to use the moments of the structure factor S(q). Both sets 
of moments are related because S(q) -  1 is the Fourier transform of u2 

u2(x) = g 2 ( x ) -  1 _ 2  s dq q2 sin qx 
-3~c o qx [ S ( q ) - l ]  (A1) 

+ x2 sin qx 
S(q) -  1 = 3 dx qx u2(x) (A2) 

We assume that (i) S(q) -1  and u2(x) decrease faster than any 
negative power of q or x when these quantities tend to infinity, (ii) 
x "g2(x) tend to zero as x goes to zero, whatever integer n is, (iii) I2 is 
equal to - 1/3. The moments of u2, In, are defined in (7) and the moments 
Jn of S(q) are defined in the following way: 

f~ 
o o  

Jn= dqq"[S(q)- l]  (n>~O) 

f~ 
o ~  

JLn= dqq"logq[S(q)- l ]  (n>O) 

fo+O~dqis(q)_l_3 n~l (_l)p ] (n 1) J-2. = -~  p=o (~p~_-li! q2plep+2 >1 

J-(2,+l)  = l i m  q2n+"--'--~ -- ~ ( - - ] )P  e~0 p=O (2p+  1)! q2PI2p+2 

( - 1 ) "  12, loge} (n~>l) + 3 (2n + 1 ) ~ . ~  +2 

] J -  1 = lim - -  IS(q) - 1 ] + 312 log e 
~ 0  q 

(A3) 
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A first property follows from the zero value of g2(x) and all its 
derivatives at the origin. Expanding (sin qx)/qx (in power of qx) in (A1) we 
obtain 

3n 
J 2 = - - ~  -- , Jzn---0 (n~>2) (A4) 

That shows that S(q)-1 always exhibits negative and positive values 
whatever F is. 

The odd m o m e n t s  J2p+l  (P/> 1) are related to the m o m e n t s  I_2p. We 
start from 

I 2p = lira +~ (p>~l) (A5) 
- ~OL~ x 2p 2p--1 J 

substitute (A1) for u2(x) and change the order of integrating. Taking (A4) 
into account, we obtain 

1 ( - 1 ) ~  1 
I 2p=-~ (2p)---TJ2p+~)o (p>~l), /o=~Sl (A6) 

The calculation of I (2p+l)  is made in the same way; there appear 
exponential integral functions En(~) which are expanded in the limit e--) 0. 
It follows that 

2 J ( - l )  p+I  2 
I ,=-(i-7)--~-~ L2, I-(2p+l)--(2p+l)[31rJLzp+2>~ 0 

where 7 = 0.577... is Euler's constant. 
The moments J-n are related 

calculation 

3n ( -  1)P 
Jo = I1, J - 2 p -  2 (2p)! [2p+l  

(-1)p +1 
J-(2p+l)-  3 i ~  p T ~ f  [IL2p+2-- 0(2p +2) I2,+2] 

0 ( n + l ) - - - 7 +  i 1 (n>~l) 
m m~l  

(p>~l) 

(A7) 

to the moments I by a similar 

(p/> 0) (A8) 

(p>~l) 
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